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[. INTRODUCTION

Test firings of an Army projectile carrying a liquid payload have resulted
in sightings of a brief vapor trail early in the flight of the projectile.
These sightings had an occurrence of about 19 in 80 at the most recent series
of firings. The vapor trails occurred for projectiles preconditioned to 241K
(435R) and 294K (530R). The atmospheric conditions varied from 278K (501R) to
294K (530R) with a typical relative humidity of 40%.

Several possible causes for the vapor trails have been postulated. The
purpose of this memorandum is to examine the possibility of the external aero-
dynamic flow over projectiles causing vapor trails to be generated.

IT. CONDENSATION PROCESS

The occurrence of condensation is possible when the local temperature is
such that the vapor pressure is saturated (relative humidity of 100%). There
are two types of condensation processes -- heterogeneous and homogeneous.
Heterogeneous condensation occurs at the surface of foreign particles (such as
atmospheric dust) which act as a catalyst. The resulting condensation occurs
at Tow Tlevels of supersaturation. Homogeneous condensation occurs in the
absence of foreign particles. Since no catalyst is present, this type of con-
densation process proceeds at a relatively slow rate at high levels of super-
saturation. The most likely condensation process for the projectile problem is
heterogeneous nucleation. That 1is, condensation takes place on foreign
particles such as dust particles in the atmosphere or on the projectile. This
type of condensation occurs for near equilibrium conditions since the presence
of the foreign particles act as catalysts.

Condensation occurs at a rate which is dependent upon many factors such as
the density of foreign particles present, degree of supersaturation, size of
particles, local temperature, local pressure, flow history, etc., Although the
physics of the condensation process are well known, the prediction of the rate
of condensation 15 subject to considerable uncertainty. Thus it s expedient
and reasonable to proceed in this initial analysis by considering that it is
possible for condensation to occur for Tlocal temperatures at or below the dew
point temperature assuming thermodynamic equilibrium conditions.

ITI. POSSIBLE MECHANISMS
A. Overview.

Two possible mechanisms for generating a visible trail of the projectile
due to aero-thermodynamic effects are: (1) Tlocal flow expansion over
discontinuities in surface curvature such as occur at the ogive-cylinder and
cylinder-boattail junctions for a projectile; and (2) formation of frost on a
cold conditioned shell.



B. Local Flow Expansion.

A series of computations have been run at M = 0.90 and M = 2 for several
free stream and wall temperature boundary conditions. The resulting flow
fields have been examined to determine regions of static temperature distri-
butions conducive to producing condensation in the air stream.

The computational techniques utilized are the thin-layer Navier-Stokes
codes described in Reference 1 for the transonic velocity and in Reference 2
for the supersonic velocity.

The flow conditions examined are summarized in Table 1. The projectile is

a six-caliber ogive-cylinder-boattail shape (Figure 1) which approximates the
M549 projectile.

TABLE 1. FLOW FIELD CONDITIONS

M T Ty Tp RH
.90 277 241 266

294 241, 294 280 40%
2.0 277 241 266

294 241, 294 280 40%

M -~ Mach number

T - free stream static temperature, °K

Ty - projectile wall temperature, °K

Tn - dew point temperature, °K (based on local RH at the test site)
RB - relative humidity

1. Nietubicz, C.J., Pulliam, T.H., and Steger, J.L., "Numerical
Solution of the Azimuthal-Invariant Thin-Layer Navier-Stokes
Equations, " U.S. Army Ballistic Research Laboratory/ARRADCOM Report

ARBRL-TR-02227, Aberdeen Proving Ground, MD 21005, March 1980. AD
A085716.

2. Schiff, L.B. and Sturek, W.B., "Numerical Simulation of Steady Supersonic
Flow Over an Ogive-Cylinder-Boattail Body," U.S. Army Ballistic Research
Laboratory/ARRADCOM Report ARBRL-TR-02363, Aberdeen Proving Ground, MD
21005, September 1981. AD A106060.



Figure 2 is a static temperature contour plot for the transonic Mach
number, M = 0.9. It shows the overall static temperature distribution about
the projectile. Notice the Tow temperature region on the projectile boattail
downstream of the expansions that occur at the cylinder-boattail junction.

Examples of the static temperature distributions are shown in Figures 3
through 14 for Mach number, M = 0.9,

Figures 3, 4 and 5 show examples of the longitudinal variation of stream
temperature at a fixed distance from the model surface, Y/D = .0133 cal for
different values of atmospheric temperatures. The extent of the regions where
the temperature is less than the dew point is indicated and is Tess than 0.1
calibers. Note that the stream temperature quickly recovers to a value sub-
stantially greater than the dew point on the projectile boattail.

The variation of stream temperature perpendicular to the body axis at a
fixed longitudinal station is shown in Figures 6-14, Again, the extent of the
flow field at or below the dew point is indicated and is obviously quite
small. The plots for X/D = 5.23 (Figures 12, 13, and 14) show that the static
temperature has quickly reached a value significantly above the dew point
shortly downstream of the beginning of the boattail.

An example of a contour plot of the static temperature distribution about
the projectile at Mach = 2 is shown in Figure 15 for T, = 241K (435R) and T =

277X (500R). This plot gives an overall perspective of the pockets of Tlow
temperature flow which exist downstream of the expansions occurring at the
ogive-cylinder and cylinder-boattail junctions.

Examples of the static temperature distributions for the supersonic Mach
number, M = 2, are shown in Figures 16 through 27.

The first series of plots, Figures 16, 17, and 18, show the longitudinal
temperature distribution at a position above the projectile surface which is
at or very near the minimum stream temperature. These plots indicate that
there exists a region about one caliber in length over which the local stream
temperature is sufficiently Tow to produce condensation.

The next series of plots, Figures 19, 20, and 21, show the temperature
distribution above the model surface perpendicular to the axis at a longi-
tudinal station upstream of the hoattail. These plots indicate that the local
temperature stays above the dew point.

The next series of plots, Fiqures 22, 23, and 24, show the temperature
distribution just downstream of the start of the boattail -- very close to the
position for minimum temperature. These plots indicate the existence of a
very thin region in which the stream temperature is below the dew point.

The final series of plots, Figures 25, 26, and 27, show temperature
distributions further downstream on the projectile boattail. Again, a very
thin region 1is shown to exist where the stream temperature is below the dew
point resulting from the flow expansion that occurs at the start of the
projectile boattail.



Considering these results, it is concluded that any vapor condensed in the
flow field over the projectile is quickly vaporized downstream of the shock
over the boattail for the M = 0.9 case. Similarly for the M = 2 case, any
vapor condensed in the flow over the boattail is either too small for obser-
vation or vaporized in the mixing and recompression that occurs in the
projectile's near wake.

C. Frost Formation on Cold Projectile.

The cold conditioning temperature for the projectiles -- 241K (435R) -- is
far below the dew temperature -- 266K (488R) and 280K (505R) for atmospheric
temperatures of 277K (500R) and 294K (530R), respectively -- for the firing
conditions of interest. Thus frost readily forms on the projectile. It is
conceivable that frost would continue to form after the projectile is
launched. Upon sufficient buildup of frost, it is also conceivable that the
frost covering would dislodge and leave a trace similar to the reported
sightings. However, this would only occur for cold conditioned projectiles.
Since trails have also been observed for projectiles preconditioned to 294K
(530R), it is unlikely that frost formation is the cause of the reported vapor
trails.

IV. SUMMARY

The possible generation of a condensation trail behind an artillery shell
has been examined by considering the local flow fields existing about a pro-
jectile at a transonic and a supersonic flight Mach number. The analysis has
shown that the local flow about a projectile does contain regions in which the
local static temperature is conducive to create condensation. However, these
local flow conditions conducive to condensation are quickly altered in the
recompression and mixing that occur in the vicinity of shocks over the projec-
tile or near the base of the projectile. Thus, if condensation occurred in
the external aerodynamic flow over the projectile, a very short lived trail
would likely be observed over the full trajectory of the projectile's flight
-- not merely the short burst signature observed shortly after launch for the
projectile in question. It is also considered unlikely that frost formation
is the cause of the reported projectile trails since sightings were observed
for projectiles preconditioned to 294K (530R).

Thus, it is concluded that it is highly unlikely that external aerody-
namics is the cause of the observed signature.
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